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We describe a new, effective medium theory to study the wave propagation and 
mechanical properties of a composite system with dispersed particulates. One 
main emphasis here is in formulating the theory and in analyzing the structure 
of the contribution of the fillers to the elastic response. By constructing the 
elastic propagator (whose fluid mechanical counterpart is known as the Oseen 
tensor), we show that an analogy between the theoretical description of the par- 
ticulate system and of suspension rheology exists when the former corresponds 
to a high-rigidity solid matrix (or, analogously, when the Poisson ratio is close 
to 1/2) in steady state. The effective Lam6 constants for this case are derived by 
combining this analogy with the theory developed by Freed and Muthukumar 
for the rheology of a suspension of spheres. The analogy is also useful in our 
new prediction of the phenomenon of elastic screening, the possible existence of 
a cutoff frequency below which elastic waves cannot propagate in the filler 
system. 

KEY WORDS: Particulate filler; composites; Green's function; Oseen tensor; 
elastic interaction tensor; suspension rheology; Lamb constant; effective medium 
theory; elastic screening. 

1. I N T R O D U C T I O N  

T w o  o r  m o r e  mate r ia l s ,  w h e n  c o m b i n e d ,  will  p e r f o r m  different ly,  a n d  of ten 

m o r e  efficiently,  t h a n  the  ma te r i a l s  by themselves .  A p a r t i c u l a t e  c o m p o s i t e  

is m a d e  by d i spe r s ing  smal l  par t ic les  of  one  m a t e r i a l  in a n o t h e r  and  is 
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most commonly used in modern technology. (1) The mechanical properties 
and some phenomenological models of these two-phase composites are 
summarized well in the book by Nelson. (2) 

In this paper, we introduce a new theoretical approach based on the 
effective medium theory (developed primarily by Freed, Edwards, and 
Muthukumar, among others, in their studies of suspension (3) and polymer 
rheology (4)) to determine the elastic moduli of a solid that contains 
spherical particles of another elastic material. 

The conventional approach for studying the mechanical properties of 
composites is primarily based on the Einstein theory of suspensions. (5) It is 
possible to evaluate the elastic constants of the composite medium in the 
limit of infinite dilution,(6) using a calculation of the stored strain energy or 
of the spatially averaged stress strain relationship. We believe that the key 
ingredient of this approach lies in the calculation of the perturbed stress or 
strain field throughout the arbitrarily loaded matrix, where the pertur- 
bations are due to the presence of particles (inclusions) that are immersed 
in the matrix. In general, the calculation of the perturbed stress or strain 
field is an extremely laborious technical problem. An analytic solution is 
available only for a single spherical (or cylindrical) inclusion with a very 
specific external load. (7) 

The first qualitative analogy between the description of elastic media 
and Einstein's theory of suspension rheology was recognized by Guth and 
his co-workers (8) four decades after Einstein's studies on suspension. This 
analogy is still very useful in studying the mechanical properties of the par- 
ticulate composites, even though the analysis, in principle, is limited to a 
dilute filler system. On the other hand, the high-filler-concentration range 
with a random distribution of particulate fillers has recently been studied 
using percolation theory to calculate effective elastic constants. (9-11) 
Percolation theory was also adapted for the suspension problem to 
calculate the shear viscosity of slurries. (12) 

Our goal in this paper is to develop a microrheological framework for 
determining the gross mechanical properties of a composite material in 
terms of particle shape, interfacial adhesion, volume fraction, and the 
statistical distribution of fillers, among others. Here we derive the virtually 
exact, yet formal effective medium equation and also show, in principle, 
how the elastic constants can be calculated. The detailed analysis requires 
complicated mathematical details; therefore, by introducing an analogy 
with the studies of Muthukumar and Freed on suspension theology, (3) we 
directly obtain results for effective elastic constants and avoid complicated 
algebraic details. 

The analogy with suspension theology begins with a derivation of an 
"elastic interaction tensor," which corresponds to the elastic Green's 
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function in the absence of particulate fillers. We then show that an exact 
analogy between the elastic and fluid media exists for a high-rigidity solid 
matrix in steady state. The analogy fails in more general cases, which will 
be discussed elsewhere. 

Since our formulation is general and covers the dynamic response of 
the filler system, it can also be used in studying wave propagation through 
random media. Recent studies on sound wave propagation in a porous 
random media are described in ref. 13. We believe that our new theory is 
not only complementary, but is also a more powerful technique for study- 
ing the mechanical and dynamical response of the composite media. 

Section 2 introduces the effective medium equations along with the 
components Zi of a friction coefficient density due to the embedded par- 
ticles. The physical interpretation of 3,i is given in Section 3 along with 
methods for their experimental determination. The existence of a long- 
wavelength contribution to ~i of the appropriate sign is shown to predict 
the occurrence of a new phenomenon of "elastic screening" in which elastic 
waves below a cutoff frequency cannot propagate through an unbounded 
filler system. Calculations presented elsewhere demonstrate the existence of 
elastic screening at low-filler-volume fractions when no-slip boundary con- 
ditions are applicable. Section 4 introduces the dynamical elastic inter- 
action tensor and the hydrodynamic analogy, which permits us to extract 
the effective elastic constants for the limit of a high-rigidity solid matrix. 

2. G E N E R A L  F O R M U L A T I O N  

When homogeneous, elastic media undergo a small deformation, the 
displacement vector u is governed by the linearized field equation, (14) 

0 2 
P ? 7  u - (,~ + ~ )  v ( v .  u) - ~V2u = V (1)  

where p is the mass density, 2 and /~ are elastic coefficients, and F 
represents the force density due to all external sources. 

With particles present, the equation of motion for the system is non- 
trivially modified by forces exerted at the particle-elastic medium interface. 
Stated alternatively, the macroscopic homogeneity of the stress no longer 
corresponds to microscopic homogeneity as well. It is sufficient for our 
analysis that an appropriate macroscopically small volume element can be 
defined such that the stress within it can be viewed as homogeneous. 
However, the volume element is of sufficient dimensions that the con- 
tinuum hypothesis is applicable. 

We let R~ be the position vector of a point with angular coordinates 
g?~ on the surface of the c~th particle. More specifically, f2~ is the center of a 
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differential element of area dg?~ such that ~ d(2~ gives the surface integral 
over the particle. 

Let R ~ be the position vector of the particle center of mass and 
r~ = R ~ - R  ~ be a radius vector from the particle center to Q~. We also 
define % = %(g?~, t) as the surface force exerted on the elastic medim at 
D~. Figure 1 depicts these quantities for spherical particles. 

The total force density at r and t from all the particles is (3) 

N 

d ~  6(r - R~) ~((2~, t) (2) E 

The modified field equation in the presence of the particles becomes 

8 2 
p ~-~ u - (,~ + ~) v ( v .  u) - ~V2u 

N 

= F +  ~ I d & 6 ( r - R ~ ) ~ ( ~ , t )  (3) 

In Eqs. (2) and (3), N is the total number of particles in the system. The 
force ~ is defined to act on the surface of the particle, while F vanishes 
both inside the particle and at its surface. 

It is important to recognize that the individual forces ~(s t) need 
not be represented in any explicit mathematical forms. To do so would 
require a knowledge of the currently unavailable microscopic forces 
between the constituent atoms of the particle and those of the matrix and 
would be beyond the scope of our continuum treatment. Furthermore, the 

�9 

z ~ th p~ticle 

y 

�9 
Fig. 1. Microscopic representation of the composite media, notation used in the analysis. 
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microscopic specifications are unnecessary in the continuum theory because 
the surface forces ~(12~, t) are established by boundary conditions that are 
imposed at the surfaces. As the boundary conditions thus represent some 
ad hoc effective specifications on the microscopic forces, they must either be 
well understood or the problem must be well formulated. In the following 
analysis, it is assumed that the above requirements do not represent 
stringent specifications, as long as the continuum hypothesis is valid. A sub- 
sequent paper presents detailed calculations using the simplest boundary 
conditions, the no-slip conditions for which u(R~, t )=  0 for all ~. 

The problem is more easily studied in Fourier space. The Fourier 
transform of Eq. (3) reduces to 

- p~o2u(k, co) + (2 + #) kk" u(k, o9) +/~k2u(k, ~o) 

N 

F(k, og)+ ~ fdtfd~2~**(12~,t)exp(-i~ot-ik.R~) (4) 

We emphasize again that the rightmost term involving % contains all of 
the detailed microscopic dynamics of the filler system. It depends on the 
boundary conditions, the respective volume fraction of all the phases, and 
the specific spatial distribution of the particles. Fortunately, it is sufficient 
for us to determine only the average properties for the entire system. The 
averaging process is performed over all spatial positions of all particles at 
some initial time. It differs somewhat from that used in the rheology of sus- 
pensions for cases in which the particles are mobile. The particles in the 
composite are fixed in space, and no specification of the particle velocities 
is necessary. 

The average displacement vector (v) is written as 

v(r, t )=  (u(r, t[ {R~ 

- f  FI dR~176 (5) 
~ = 1  

where 7t({R ~ is the initial N particle distribution function (see standard 
texts on statistical mechanics; e.g., ref. 15) of the particulate fillers, and the 
dependence of u on the initial positions of the particles is explicitly denoted. 

The average field v is much simpler both in structure and to calculate 
than u. The average of Eq. (4) produces a formal expression for an effective 
medium theory of solid composites, 

[ --p~o 2 + ~1(o9)] v(k, 09) 

+ [2 +/~ + ~2(k, co)] kk" v(k, ~o) 

+ [# + 33(k , 60)] k2v(k, m) = F(k, m) (6) 

822/52/5-6-13 
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The quantities ~1, '-'~2, and 33 are defined from Eqs. (4)-(6) by 

If dt f ~ dQ~exp(-ik.R~-ioot)~(g2~,t)> 
= [-31((-O ) 6 -4- 32(k ,  ~ )  kk + 33 (k  , c.o) k263 ~ v (7) 

where 6 is the unit tensor. 
Some brief comments on Eq. (7) are in order. The left-hand side must 

be proportional to v in the region of linear elasticity, and the propor- 
tionality constant must be a second-rank tensor. Since the average is 
performed over the statistical distribution of fillers, the resulting second- 
rank tensor can only depend on k. This implies that this tensor is a linear 
combination of 6 and kk in the form written in Eq. (7). 

However, it still remains to determine 31, ff 2, and 33. If we can 
calculate these quantities, the problem is completely solved; however, the 
exact calculation of these quantities is virtually impossible. The major pur- 
pose of this paper is to investigate the properties, physical interpretation, 
and methods for experimental determination of these quantities without 
introducing tremendous algebraic details. Specific computations of new 
results will be provided in a subsequent paper for the steady-state limit. 

All of the relevant information pertaining to the volume fraction, 
particle distribution, and boundary conditions is conveyed into the for- 
mulation by 31, 32, and Z 3. We propose an approach for their separable, 
experimental determination in the next section. 

3. PHYSICAL M E A N I N G  OF --1, -2 ,  AND --a 

The steady-state (~ = 0) and low-wavevector (i.e., k ~ 0) limit enables 
Eq. (6) to be reduced to 

31(0 ) v(k, 0) + [2 +/~ + 32(0, 0)3 kk. v(k, 0) 

+ [/~ + 33(0, 0)] k2v(k, 0) = F(k, 0) (8) 

Alternatively, the real-space form of Eq. (8) is 

3 , (0)v  -- [2 +/~ + 32(0, 0)3 V(V" v) - [/~ + 33(0, 0)] V2v = F (9) 

In this zero-frequency limit, the real-space representation of the effective 
field equation (8) becomes 

- (2* + #*) V(V. v) - #*V2v = F (10) 

where 2* and #* are the effective composition-dependent Lain6 coefficients 
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for the composite material By comparing Eqs. (9) and (10) [setting 
Z~(0) = 0 for simplicity], we have 

= +-=3(0, 0), 0 ) -  z3(o, 0)] 

Figure 2 illustrates the effective medium concept. 
Therefore, if we can calculate ~-~2 and Z3 to obtain effective Lain6 

constants from Eq. (11), we can determine any other set of effective elastic 
properties. For example, the relationships 

/~(32 + 2#) 2 
E =  , v - - -  (12) 

2 + #  2 ( 2 + # )  

define the Young's modulus E and Poisson ratio v. A future paper gives a 
general scheme for calculating ~ and -=3 as expansions in filler volume 
fraction ~b. Consequently, we believe this method to be more general and 
systematic than any previous theory. (1"2) One point deserves special 
emphasis: -=~ is, in general, nonvanishing for the sys~tem. The term 
originates as a screening of elastic interaction due to the fixed particle's 
presence. The existence of randomly distributed fillers damps or "screens" 
the elastic waves in the medium. A similar concept that is useful in the fluid 
mechanics of porous media is known as Darcy's law. A study of Eq. (6) for 
finite frequencies also enables us to derive information about the influence 
of the particles on sound wave propagation and attenuation. These two 
cases are now discussed separately. 

Matrix (k and FL) (U and #') Composite ()~* and ~) 
\ 

,;,;,;.;,?;,;,;,;,;,;,%,;,;,;,;,,%,;,;,;,;,;,;,;.% 

",!ii;iiiiiiiiiiii iiiiiili ,i',iiiiiiiiiii ,i',i',i',i!i!ili ', 
iiiiiiiii;iiiii)iiiiiiiiiiiiiiiiiii)iiiiiiiiiiiii)iiiiiii!iiiil 

(A) (B) 

Fig. 2. Notation used for the elastic constants. (A) A system that may represent the actual 
microscopic configuration of some region in the composite. The force dynamics for this system 
is given by Eq. (4). (B) An averaged system with the same effective macroscopic characteristics 
as for (A). The dynamics for (B) are described by either Eq. (8), or its equivalent, Eq. (10). In 
Eq. (i0), we have introduced the quantities 2* and p*, effective elastic constants. 
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3.1. ~1 m~0 (No Interparticle Elastic Screening) 

In this case, Eq. (6) becomes 

--  pcoZv(k, co) + [2  + # + 32(0,  0 ) ]  kk.  v(k, co) 

"4- [,/2"t-33(0 , 0 ) ]  k2v(k,  c o ) = F  (13) 

The general dispersion relation for wave propagation is co= +ck. The 
transverse and longitudinal waves propagate by different mechanisms, and 
their components can be separated from Eq. (13) through their respective 
dependences on v• = v - l ~ ( ~ ,  v) and Vll = [ (~"  v). Here, [ = k /k  is a unit 
vector in the k direction. 

The longitudinal wave equation is 

( _ pco2 .]_ pc~k2)(k . v) = k" F 

2 + 2/t + 32(0, 0) + 33(0, 0) (14) 
c~= 

P 

with ell the longitudinal sound velocity in the averaged composite. 
On the other hand, the transverse wave equation follows from Eq. (13) 

as 

( - p c o :  + pc2k2)[v  - ~(~" v)] = F - ~1~" F 

/~ + 33(0, 0) (15) 
c 2 - 

The two dispersion relations (14) and (15) enable the experimental deter- 
mination of ~2 and -~3 as shown in Figs. 3A and 3B. 

2.2. Elastic Screening Occurs (-1 ~0)  

Screening effects on the hydrodynamics of concentrated particle 
systems have been much studied in recent years. (3'4'16'17) However, a con- 
venient way for the direct experimental measurement of hydrodynamic 
screening has not yet been developed. We propose that the analogous 
effects for the solid composite could be determined by acoustics. As the 
approach is new, its consequences are now carefully considered. 

First, consider the frequency versus wave number response (Fig. 3C). 
As k-~ 0 and co---, 0, 31 is written as 

Zl = 3 ~ + c023~ (16) 
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Q) (,O 

composite 

atrix 

# k  ~k 

(A) (B) 

O) 
2 2 

C - C 0 

~k 

(C) (D) 

Fig. 3. Predicted low frequency limiting behavior for sound wave propagation in par- 
ticulate-filled composites. With actual experimental data of the type depicted, we interpret the 
dispersion relations in the following ways. Following are explanations of the gedanken 
experiments performed and their results: (A) Results from studies of transverse waves in dilute 
systems where nearly zero screening exists. This gives us 23. (B) Similar studies of the 
longitudinal waves, yielding {Z 2 + Z 3 }. (C) The behavior of longitudinal waves at higher con- 
centrations, where screening occurs, and is used to obtain 21. (D) The results from a series of 
related composites; that is, where they all contain the same type of particles, interracial 
bonding, and matrix material, but differ in concentration and also the degree of dispersion. 
The lines of differing slopes connect composites having the same normalized particle spatial 
distribution function. The limiting low concentration intercept is a function of the interfacial 
boundary conditions. The result of a common intercept (as shown) would not be a general 
one unless the interface is controlled. The first and the second order coefficients for concen- 
tration dependencies of the composites effective elastic constants [see Eqs. (21) and (22)] can 
be obtained directly from this type of data. 
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Here, unlike in fluid mechanics, the linear term in ~o vanishes due to time- 
reversal symmetry. The Z ~ and ZI in Eq. (16) are independent of k and o~. 
Therefore, Eqs. (6) and (16) imply 

S~ ~o)-  (p - Sl)  ~ v ( k ,  ~) 

+ [)~ + # + ff2(O, 0)]  kk .  v(k, ~o) 

+ [-#+33(0, 0)] k2v(k, o~)= F(k, ~o) (17) 

The longitudinal wave follows from Eq. (17) as the solution to 

[ 3 ~  ( p -  31) ~2 + ()~ + 2~t + 32 + 33) kZ](k �9 v) = k" F (18) 

thereby providing the general dispersion relation for the frequency of 
longitudinal waves as 

~~ 2 _ 3 ~ + (2 + 2# + 32 + 33) k 2 
P _ 31 (19) 

3 alters the longitudinal sound velocity, i.e., the curvature in Eq. (19). In 
addition, screening makes the frequency approach a nonzero minimum 
frequency or intercept of 

--* ~ k 0 (20) 

thereby allowing us to measure 31. The transverse wave can be similarly 
analyzed. A subsequent paper provides an explicit computation of 3 0 for 
dilute fillers. 

Note that Z ~ < 0 for certain ranges of/~ and 2. (2~ In that case, unless 
p - Z I < 0, Eq. (20) implies that m is purely imaginary. Hence, the waves 
are damped for k 2 < -3~ + 2# + 32 + 33). 

In addition, we may study how concentration influences the speed of 
sound (Fig. 3D). As an example, assume that the elastic behavior of the 
composite is given by 

#* = #(1 + K 1 q~ + K2q~ 2) (21) 

Equation (17) then implies that a measurement of transverse sound speed 
enables KI and K 2 to be obtained as 

C 2 _ C 2 

- -  = K1 + K2q~ (22) 

where c is the sound velocity of composite and Co is the sound velocity in 
the absence of filler. Therefore, plotting (c 2 -  c2)/cb against'~b, as shown in 
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Fig. 3D, provides the elasticity coefficients KI and K 2 (Einstein's and 
Huggins' coefficients) as intercept and slope. 

The intercept gives K1, and we believe that it is primarily dependent 
on interfacial characteristics (through boundary conditions such as no- 
slip). The slope yields K2, and we speculate that it depends, in part, on the 
statistical distribution of particles. 

There exists a remarkable contrast in the dispersion relation between 
the cases of Sections 2.1 and 2.2. In the former case the absence of screening 
causes co to vanish as k approaches zero (acoustic phonon), while in the 
latter case with screening co remains finite (nonzero) as k approaches zero 
(optical phonon). Our dilute, steady-state, no-slip computations in a sub- 
sequent paper, however, find that El(0) is always nonzero, and that 
question should be investigated for other choices of boundary conditions. 

4. C A L C U L A T I O N  OF = = A N D  -= A N D  T H E  ELASTIC  - -1  , - - 2 ,  3 ,  

I N T E R A C T I O N  T E N S O R  

A full-scale effective medium theory for calculating El, ~='~2, and E 3 is 
developed elsewhere. Here, instead, we show how some results may be 
obtained by studying the analogy and differences between the theory of 
fluid mechanics and elastic media for particle systems. 

The field equation for an elastic medium in Eq. (1) resembles the 
linearized Navier-Stokes equation of fluid mechanics for the fluid velocity 
vs, 

p ~ v / -  r/VZv/+ Vp = V (23) 

with the incompressibility constraint 

V- vf = 0 (24) 

Here, p is the pressure and r/is the shear viscosity of the fluid. 
The analogy consists of interpreting the displacement vector u as a 

velocity disturbance v/ and in making the correspondences r/~/~ and 
p ~ - (2  +/t) V-u. However, the underlying physics is somewhat different 
in both cases, as follows: 

1. Equation (23) has a first-order time derivative which is charac- 
teristic of a dissipative mechanism, while Eq. (1) involves a second-order 
derivative as in wave propagation. 

2. The relation p-- .--(2+~t)  V.u is only a mathematically con- 
venient analogy. The dependence on pressure in fluid mechanics arises 
directly due to external forces. 
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3. Incompressibility, V . u = 0  as in Eq. (24), is relatively rare in 
solids, but generally holds for Newtonian fluids at low frequencies. 

In order to introduce the mathematical analogy between the descrip- 
tion of the elastic medium and the suspension rheology, it is important to 
study the fundamental solution to the field equation (1) for homogeneous 
elasticity when there is a point source, i.e., when F(r, t ) =  
A 6 ( r -  ro) 6(t  - to). The general solution in this case is written as 

uo(r, t) = G ( r -  ro; t - to)" A (25) 

where G is called the dynamic elastic interaction tensor. This is now 
derived. 

Taking the space-time Fourier transform of Eq. (1) produces 

- - p ~ 2 u  § ()~ § k(k.  u) § #k2u = F (26) 

Multiplying Eq. (26) by k .  yields 

-p~oZ(k  �9 u) + (2 +/~) k2(k �9 u) + #k2(k �9 u) = k .  F (27) 

while rearrangement yields 

k ' u -  
k . F  

_p~Z + (2 + 2/0 k 2 
(28) 

Therefore, Eqs. (26) and (28) combine as 

u(k, ~o) = G(k, o)) .  F(k, o9) (29) 

where the explicit solution for G emerges as 

1 6 
G= _pJ+~k2F[_ ('~+~)~ 7 

-PC~ 2 +/tk2 t- _p~Z + (2 + 2/0 k 2 

(30) 

The first term in Eq. (30) is associated with a transverse elastic wave 
having a propagation velocity ct of c 2 = I~/P. The second term on the right- 
hand side in Eq. (.30) describes the longitudinal elastic wave with velocity 

c~ = (2 + 2#) /p  = E(1 - v)/p(1 + v)(t -- 2v) 

Both of these relations are presented in standard texts on elasticity. (~4) 
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Given the definitions of transverse and longitudinal wave velocities, G may 
be rewritten as 

p(-co2 + c~k 2) G p(_ooZ+c.k2)-4; (31) 

It is of interest to express Eq. (29) in its real-space form 

.(r, t) = f f d i G ( r -  , -  t-). (32) 

For mathematical simplicity, we consider the steady-state limit (09 = 0) of 
the elastic interaction tensor (Gs), 

G s = pcZk 2 + pcZk----- ~ 

= ~ - ~  (2 + 2/,t) k 2 
(33) 

The real-space representation of G~ is obtained by taking the inverse 
Fourier transform in the Appendix. The result is found to be 

rfr d3k 
G s ( r - r ' ) = J J J  ~ e x p [ - i k .  ( r - r ' ) ]  Gs(k ) 

6 + R R  6 - R R  

8rc#R 8n(2 + 2/0 R 

(34) 

where R - r -  r' and R = R/R. Thus, when 2 ~ ~ (or v ~ 1/2), G s becomes 
identical to the Oseen tensor in fluid mechanics, where upon Eqs. (33) and 
(34) reduce to 

1 
G~(k) = ~-~ (6 - ~ ) ,  ,~--, oo (35) 

1 
Gs(R) = 8 -~R (6 + RR), 2 ~ ~ (36) 

Here we only treat the v ~ 1/2 case to establish the hydrodynamic analogy 
and to show how results for the suspension rheology can be used for filler 
elasticity. Elsewhere we give new results for v r 1/2. When v = 1/2, we may 
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readily determine 32 and 33 of Eq. (7) by using the calculations of Freed 
and Muthukumar (3) (with slight modification) for spheres, which imply 

lim ( ~  fdt fdf2~(f2~, t )exp[- ik .R~-ioot])  
k ~ O  cocO e=l  

[ #Vs(24k26-4~)] +0(c2, = 3~(0) 6+ 2 -3,uGk26+-~ (37) 

where c is the number concentration of the particulate filler and v, = 4za3/3 
is the volume of a filler sphere. 

Therefore, comparing Eq. (37) with Eq. (7) provides the identifications 

2 
32(0 , 0 ) =  - - 3  C ~ ) s  At- O(C2) 

5 
~3(0, O) =2 c~v~ + O(c 2) 

(38) 

Hence, substituting Eq. (38) into Eq. (11) yields the effective Lam6 
coefficients to order ~b as 

5 
#* = I~ + 2 C~Vs = #(1 + 2.5qi) (39) 

2 5 ] 19 
; v * = , t +  - ~ C~Vs--~ C~Vs = ;t---~ ~O (40) 

Using Eq. (12), we find for the Young's modulus and Poisson ratio for 

1 
v = 5 (1 - ~/,~) + 0 [ ( u / ; 4 2 ]  (41) 

E =  2/~(1 + v) + 0(#/2) (42) 

while the effective Young's modulus E* and the Poisson ratio v* are found 
from Eqs. (39)-(42) to be 

5 v*= v -~  (1-  2v) (~ (43) 

( 5 1 + 4 v ~ b )  (44) E*=E 1 + ~  l + v  
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The dilute-concentration limit with no-slip boundary conditions at the 
surface of particulate filler corresponds exactly to the limit considered by 
Muthukumar and Freed (3) for the suspension problem. 

5. S U M M A R Y  A N D  C O N C L U S I O N  

This paper demonstrates the general, yet formal structure of an effec- 
tive medium equation for particulate filled systems. To complete the 
analysis, it is necessary to calculate ZI, -~2, and S3 for a given choice of 
boundary conditions and statistical distribution of the particulates. Exact 
calculation of the Si ( i= 1, 2, 3) is an impossible task; however, it is 
possible to develop a systematic method for the approximate calculation of 
these quantities. A subsequent paper utilizes concentration expansions to 
derive new results for the Lam6 constants for general v at low filler volume 
fractions. We show here how the Zi are, in principle, extracted from 
experimental measurements such as wave propagation in the composite 
medium and the mechanical properties of the filler system. 

The S i are determined here for the simplest physial situation (i.e., 
no-slip boundary conditions, dilute filler concentration, steady state, and 
2---, oo) by making an analogy between the particulate problem and the 
fluid mechanical suspension problem. The analogy is established by using 
an "elastic interaction tensor," which is analogous to the Oseen tensor in 
hydrodynamics. This elastic interaction tensor is shown to become struc- 
turally identical to the Oseen tensor, enabling us to adapt the results of 
Freed and Muthukumar (3) to evaluating Si. 

Although the ~b ~ 0, co ~ 0, 2 ~ oo limit produces results identical to 
Einstein's theory of suspension, the importance of the current work should 
not be underestimated. Several important contributions from the new 
formulation are as follows. 

1. Even though Einstein's original idea of energy dissipation was 
adapted by various authors to calculate the effective Lam6 constant, the 
derivations in the literature do not lend themselves to systematic 
generalization of arbitrary co, ~b, and 2. The present paper, however, 
presents the most general mathematical structure for the dilute filler system 
by introducing modern field-theoretic techniques, which permit some of 
these extensions to be made. 

2. It is possible to capitalize upon a vast amount of calculations 
obtained by Freed and Muthukumar by making an analogy in the study 
of the particulate system when 2>>#. For example (see Fig. 3D), the 
filler system analogy of Huggins' coefficient, (18) of hydrodynamic 
screening, (3'4'16'x7) and of the effect of the statistical distribution of 
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particulates (ls'19) can all be obtained through analogy with the 
Freed-Muthukumar theory. These results and their comparison with 
experimental data will be presented elsewhere. 

3. Most importantly, elsewhere (2~ we show how a modification of 
the techniques of Freed and Muthukumar enables us to treat a dilute par- 
ticulate system with an arbitrary value of 2. This extension requires sub- 
stantial algebra, so this subsequent paper provides a further description of 
the explicit computations necessary to evaluate the Zi, whereas here we 
focus on their definition, interpretation, and extraction from experimental 
data. 

4. Further extensions are, in principle, possible to calculations for 
~o~0 and/or for higher filler concentrations. These interesting, but 
technically much more involved, computations are left for future work. 

APPENDIX.  REAL-SPACE REPRESENTATION OF ELASTIC 
INTERACTION TENSOR 

To avoid added mathematical complications, we limit the analysis to 
the real-space representation of the elastic interaction tensor in a steady 
state [see Eq. (33)]. The evaluation of the Fourier inverse of G s requires 
evaluation of the integrals 

fffd3k exp( - R) ik- f l (k  2) 6 

fo = 2~ k2dk d~ exp( - ikR#) f~(k 2) d~ 
1 

where 

= 2zc f o  k2 dk Io(kR) f l (k  2) 6 (A.1) 

f 
l 

Io(kR) = dl~ e x p ( -  ikR#) 2 sin (kR) 
1 kR 

and evaluation of 

fffd3k exp( -- R) ik. f2(k 2) 

fo~ f l l f ~  ~ = k 2 dk d# d~ exp( - ikRl.t) fz(k z) [~ (A.2) 

We proceed by representing [~ in the coordinate system of Fig. 4. Use 
of Fig. 4 implies 

= RI~ + ~ v c  + ~vs 
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R 

Fig. 4. 

x 

Notation used for the coordinate system. From this figure, we define the following: 
fi = R/R; R = r - r'; kt = cos 0; v = sin 0; c = cos ~b; s = sin ~b. 

a n d  c o n s e q u e n t l y  we have  

~ = R R #  2 q- xxy2c2 -~ yyy2s2 q- cross  t e r m  (A.3)  

There fo re ,  i n t e g r a t i n g  Eq. (A.3)  m a k e s  the  cross  t e rms  van i sh  a n d  leaves  

= ~ [ ( 6  - R R )  - (6  - 311~) p2]  ( 1 . 4 )  

S u b s t i t u t i n g  (A.4)  i n to  (A.2)  gives 

f f f  d3k e x p ( - / k .  R )  f 2 ( k  2) 

;0 = ~ k 2 dk  d~ e x p ( - i k R # )  f 2 ( k 2 ) [ ( 6  - 1 ~ )  - (6  - 3 R R )  g2]  
- - 1  

C o m b i n i n g  Eqs.  (33),  (A.1) ,  a n d  (A.5)  p r o d u c e s  the  f inal  r e a l - space  fo rm of  
the  e las t ic  p r o p a g a t o r  g iven  in  Eq. (34),  
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G ~ ( R )  = ffl d~k [ 1 1~1~ 1 ~5 (6-  l~[) + (2 + 2#) k2 exp(-ik. R) 

4re I~o 1 sin(kR)[ ~ ] 
(~-~-~3 Jo k~ ak - -  6 -  ( 6 -  ~ )  #k  z k R  

(2x)  r ~ k2 l~[ dk 

/.E 2 /.E 2 

--  ( 2 ~ )  3 U,~ ( 6  4- R , R , )  -'[ (2x) 3 (2 + 2p.) R (6  - RR) 

1 1 
= ~8=u - - - ~  (6 + RR) + 8~(,~ + 2u) R (6 - RR) 
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